266 research outputs found

    Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin

    Get PDF
    Curcumin encapsulated in mesoporous silica nanoparticles showed improved solubility, in vitro release profile and significantly enhanced cell cytotoxicity compared to the pure drug

    Combination of microporous hollow carbon spheres and nafion for the individual metal-free stripping detectionof Pb2+ and Cd2+

    Get PDF
    Here, the combination of Nafion with microporous hollow carbon spheres (MHCS) is first proposed to fabricate a disposable metal-free electrode for heavy metal stripping sensing. The MHCS-Nafion composite film electrode is prepared by drop-casting a mixture of MHCS and Nafion onto the lab-made screen-printed carbon electrode (SPCE*). Results demonstrate that the interfusion of MHCS into Nafion offers enhanced performance for the electro-enrichment and stripping of lead and cadmium over the only Nafion film: 1) abundant MHCS immobilized on the electrode surface serve as effective nucleation sites for metal ion reduction; 2) the mixing of MHCS into Nafion enlarges the active surface of negative-charged Nafion for the electrostatic adsorption of metal cations. The proposed MHCS-Nafion/SPCE* provides linear responses for Pb2+ and Cd2+ in the range of 2 - 200 mu g/L, with a detection limit of 1.37 and 1.63 mu g/L, respectively. Practical applications of the sensor in water sample detection with good accuracy have also been confirmed

    Roots play a key role in drought-tolerance of poplars as suggested by reciprocal grafting between male and female clones

    Get PDF
    Drought stress influences the growth of plants and thus grafting has been widely used to improve tolerance to abiotic stresses. Poplars possess sex-specific responses to drought stress, but how male or female rootstock affect the grafted plant is little known. To explore the mechanisms underlying changes in drought tolerance caused by grafting, we investigated the changes in growth, leaf traits, gas exchange and antioxidant enzyme activities of reciprocally grafted seedlings between Populus euramericana cv. "Nanlin895" (NL-895) (female) and Populus deltiodes cv."3412" (NL-3412) (male) under water deficit stress with 30% field capacity for 30 d. Results showed that drought stress affected adversely growth, morphological, and physiological characteristics in all seedlings studied. Grafted seedlings with male roots can effectively alleviated the inhibition of growth induced by drought stress, as shown by higher WUE, activities of SOD, POD and CAT, and lower levels of lipid peroxidation. Male seedlings with female roots were found to be less tolerance to drought than non-grafted male clones and female scions with male roots, but more tolerance than non-grafted female clones. This results suggested that drought tolerance of grafted seedlings is primarily caused by the rootstock, although the scion also affects the grafted plant. Thus, paying attention on the root genotype can provide an important means of improving the drought tolerance of poplars.Peer reviewe

    Nitrogen addition alleviated sexual differences in responses to cadmium toxicity by regulating the antioxidant system and root characteristics, and inhibiting Cd translocation in mulberry seedlings

    Get PDF
    Cadmium (Cd) toxicity and nitrogen (N) deposition are two major environmental stresses which can affect plant growth. It's less clear that how the combined Cd accumulation and N deposition affect the male and female plants of dioecious species. The aim of the present study was to detect sex-specific responses to Cd stress and simulated N deposition in one-year-old male, female and hermaphrodite seedlings of Morus alba. Changes in morphology, physiology, root architecture and biomass of the three sex types of mulberry seedlings were determined. The results showed that Cd toxicity caused limited growth, impaired photosynthetic apparatus and decreased gas exchange rates with significant sex-specific differences. Mulberry was found to deploy detoxification mechanisms to avoid or tolerate toxic Cd effects through the activation of the antioxidant system, increasing proline and non-protein thiol contents, translocating Cd into different plant parts and decreasing biomass. Females displayed a low tolerance to high Cd and were more sensitive to Cd stress. Simulated N deposition alleviated the negative effects of Cd on leaves and decreased sex-specific differences in the three kinds of mulberry seedlings, but N fertilizer did not affect the total biomass. The N-stimulated increasing in proline and non-protein thiol contents might play a crucial role in resisting the damage caused by Cd stress, and the three kinds of mulberry seedlings had slightly different ways of improving Cd tolerance by N deposition. Sexual differences in Cd accumulation are correlated with root architecture. This study provides evidence for the utilization of mulberry to treat Cd-contaminated soils under N deposition.Peer reviewe

    Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery

    Get PDF
    Novel mesoporous silica nanoparticles (LPMSNs) functionalised with degradable poly(2-dimethylaminoethyl acrylate) (PDMAEA) have been developed (PDMAEA–LPMSNs) as nano-carriers for gene delivery. The unique design of PDMAEA–LPMSNs has endowed this system with multiple functions derived from both the organic and inorganic moieties. The cationic polymer unit binds to genetic molecules and undergoes a self-catalyzed hydrolysis in water to form a non-toxic anionic polymer poly(acrylic acid), allowing controlled release of siRNA in the cells. The nanopores of the LPMSNs provide a reservoir for storage and release of chloroquine to facilitate endosomal escape. The PDMAEA–LPMSN composites were characterized by elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid-state 13C magic-angle spinning nuclear magnetic resonance (MAS-NMR), thermogravimetric analysis (TGA), and nitrogen sorption techniques. Their siRNA delivery performance was tested in a KHOS cell line, showing promising potential for co-delivery of genes and drugs

    Immune-Inhibitory Gene Expression is Positively Correlated with Overall Immune Activity and Predicts Increased Survival Probability of Cervical and Head and Neck Cancer Patients

    Get PDF
    Background: Limited immunotherapy options are approved for the treatment of cervical cancer and only 10–25% of patients respond effectively to checkpoint inhibition monotherapy. To aid the development of novel therapeutic immune targets, we aimed to explore survival-associated immune biomarkers and co-expressed immune networks in cervical cancer. Methods: Using The Cancer Genome Atlas (TCGA) Cervical Squamous Cell Carcinoma (CESC) data (n = 304), we performed weighted gene co-expression network analysis (WGCNA), and determined which co-expressed immune-related genes and networks are associated with survival probability in CESC patients under conventional therapy. A “Pan-Immune Score” and “Immune Suppression Score” was generated based on expression of survival-associated co-expressed immune networks and immune suppressive genes, which were subsequently tested for association with survival probablity using the TCGA Head Neck Squamous Cell Carcinoma (HNSCC) data (n = 528), representing a second SCC cancer type. Results: In CESC, WGCNA identified a co-expression module enriched in immune response related genes, including 462 genes where high expression was associated with increased survival probability, and enriched for genes associated with T cell receptor, cytokine and chemokine signaling. However, a high level of expression of 43 of the genes in this module was associated with decreased survival probability but were not enriched in particular pathways. Separately, we identified 20 genes associated with immune suppression including inhibitory immune checkpoint and regulatory T cell-related genes, where high expression was associated with increased survival probability. Expression of these 20 immune suppressive genes (represented as “Immune Suppression Score”) was highly correlated with expression of overall survival-associated immune genes (represented as “Pan-Immune Score”). However, high expression of seven immune suppression genes, including TWEAK-R, CD73, IL1 family and TGFb family genes, was significantly associated with decreased survival probability. Both scores also significantly associated with survival probability in HNSCC, and correlated with the previously established “Immunophenoscore.” Conclusion: CESC and HNSCC tumors expressing genes predictive of T cell infiltrates (hot tumors) have a better prognosis, despite simultaneous expression of many immune inhibitory genes, than tumors lacking expression of genes associated with T cell infiltrates (cold tumors) whether or not these tumor express immune inhibitory genes.</p

    Shaping nanoparticles with hydrophilic compositions and hydrophobic properties as nanocarriers for antibiotic delivery

    Get PDF
    Inspired by the lotus effect in nature, surface roughness engineering has led to novel materials and applications in many fields. Despite the rapid progress in superhydrophobic and superoleophobic materials, this concept of Mother Nature’s choice is yet to be applied in the design of advanced nanocarriers for drug delivery. Pioneering work has emerged in the development of nanoparticles with rough surfaces for gene delivery; however, the preparation of nanoparticles with hydrophilic compositions but with enhanced hydrophobic property at the nanoscale level employing surface topology engineering remains a challenge. Herein we report for the first time the unique properties of mesoporous hollow silica (MHS) nanospheres with controlled surface roughness. Compared to MHS with a smooth surface, rough mesoporous hollow silica (RMHS) nanoparticles with the same hydrophilic composition show unusual hydrophobicity, leading to higher adsorption of a range of hydrophobic molecules and controlled release of hydrophilic molecules. RMHS loaded with vancomycin exhibits an enhanced antibacterial effect. Our strategy provides a new pathway in the design of novel nanocarriers for diverse bioapplications

    Writing for Local Government Schools: Authors and Themes in Song-dynasty School Inscriptions

    Get PDF
    A hallmark of the Song dynasty\u27s achievements was the creation of a national network of state-sponsored local schools. This engendered an exponential growth of commemorative inscriptions dedicated to local government schools. Many authors used these inscriptions as an avenue to expound and disseminate their visions of schools and education. Using the methods of network analysis and document clustering, this article analyzes all the inscriptions extant from Song times for local government schools. It reveals a structural schism in the diffusion of ideas between the Upper Yangzi and other regions of the Song. It also demonstrates the growing intellectual influence of Neo-Confucian ideologues that gradually overtook that of renowned prose-writers. Methodologically, this article provides an example of how diverse digital methods enable us to handle a large body of texts from multiple perspectives and invite us to explore connections we might not have otherwise thought of. Free access link: https://www.cambridge.org/core/journals/journal-of-chinese-history/article/writing-for-local-government-schools-authors-and-themes-in-songdynasty-school-inscriptions/8917993FA5EC53FC837961E6B929856F/share/eb301b0b72c9781fb464765a830a50b029453e6
    corecore